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ABSTRACT 
Early detection of degradation is crucial to prevent severe 
cable damage. This paper explores the possibility of using 
the cable screen currents as an indicator of cable aging 
status. A T-circuit model is developed for three single-core 
coaxial cables excited by three-phase voltages, where the 
XLPE insulation is modelled using a parallel conductance 
(G) and capacitance (C) branch representing a non-linear, 
voltage-dependent admittance. A set of differential 
equations are defined for the above configuration to 
describe the harmonic content of the leakage current 
under partial discharges as a result of insulation 
deterioration and water treeing.  
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INTRODUCTION 
With an increase in the need for a secure grid, the impact 
of unscheduled decommissioning of medium and high-
voltage transmission cables is a subject of particular 
concern. This attracts high interest in researching aging 
studies of cables, in particular, that of its insulation. For this 
purpose, continuous monitoring of the cable condition is 
necessary. At present, two types of tests are available for 
detecting aging: tan delta measurements and partial 
discharge measurements [1] These tests have excellent 
detection accuracy but come with some challenges. The 
former requires taking the cable out of service and the latter 
involves the deployment of complex systems that require a 
power supply along the entire length of the cable. This 
indicates a need for developing a measurement technique 
that can detect aging while overcoming these drawbacks.  

It is becoming increasingly common to have current 
measurement systems at cable screen earthing. The 
current content can be examined to explore the relationship 
between the cable age and the harmonic characteristics 
and content of the leakage current migrating through the 
cable insulation, which eventually is reflected in the 
frequency-resolved current content distribution in the cable 
screen. The deterioration of the XLPE insulation because 
of aging results in the generation of harmonics of specific 
(odd) orders in the leakage current, as a result of the non-
linear behaviour of the XLPE insulation conductance. 
Water trees formed inside the XLPE insulation is one type 
of severe deterioration, and former studies have correlated 
non-linear dielectric responses as a result of water trees, 
with some focus being on the generation of third harmonics 
in the leakage (loss) current, where the harmonic current 
magnitude and phase angle has been shown to, 

respectively, increase and decrease with water tree 
degradation [2]–[4]. Furthermore, thermal aging has been 
shown to generate harmonics of especially third, sixth, and 
thirteenth order in the leakage current [5]. 
It is thus evident, that the non-linear V-I relationship of the 
XLPE insulation and associated harmonic current 
generation caused by water trees, is a promising diagnostic 
benchmark for the health of the cable insulation, where 
early detection is of great interest.  

Due to the nature of the coaxial cable geometry, the 
generated harmonic content in the leakage current is 
reflected in both the phase conductor and screen conductor 
current flows, and thus any system-level harmonics that 
may be present in the cable conductor and screen voltages 
themselves or from inductive coupling from the other 
phases, must carefully be separated from the analysed 
harmonic current content generated by the insulation. The 
effects of said system-level harmonics are examined on the 
proposed circuit model of this paper.  

The loss tangent, tan(δ), is commonly used to describe 
cable insulation health, and is basically the relationship 
between the resistive leakage current to the capacitive 
(charging) current, where for an ideal insulator, the former 
is zero, resulting in a phase difference of the two 
components equal to 90 degrees. As XLPE insulation ages, 
the loss tangent is seen to increase in value [6].  

For water trees and insulation breakdown in general 
associated with partial discharge generation, the proposed 
circuit model in this paper adapts a parallel 
conductance/capacitance (GC) branch, where the 
conductance of idea cable insulation is zero, however, the 
generation of partial discharges can basically be seen as a 
degradation of this conductance (and to some degree 
capacitance), and the accumulation of these discharges 
can constitute a measurable (leakage) current. This current 
is, in principle, dependent on the operating voltage, since 
partial discharges only occur in certain areas of the voltage 
waveform. This current will therefore lead to an increase in 
the harmonic content of the screen current. 

MODEL DESCRIPTION 
The basis for the theoretical modelling is a simple circuit of 
100 m of three single-core, high-voltage coaxial cables of 
420 kV, 2500 mm2 Al, excited by three-phase voltage 
sources at both ends. Any variation of phase at one end, 
results in a corresponding current flow, which can be as 
high as 100A as seen in a case study in this paper. The 
cable circuit screens are shorted, representing a double-
point grounded screen configuration. 

The development of circuit equations assumes that 
capacitances are restricted to a per-phase basis. Mutual 
inductive coupling is included for each phase to each 
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screen, and between the three screens themselves, where 
that latter is considered due to the circulation of currents in 
the screens as a result of the double-ended grounding. 

Single-phase circuit model 
For simplicity, the governing equations are firstly developed 
for a single, isolated phase configuration with voltage 
excitation from one end, where the equivalent circuit can 
be seen in Figure 1 below. This circuit and its dynamic set 
of equations will be used as the basis of the computation of 
the conductance generated harmonics. The insulation 
“admittance” consists of capacitance (C) and conductance 
(G) forming the shunt connection in this T-model, with 
equal phase resistance (R) and self-inductance (L), and 
screen self-inductance (Ls) and resistance (Rs), plus mutual 
phase-to-screen inductive impedance couplings (M) on 
both side of the T branch. Grounding resistances, Rgr, of 1 
ohm are introduced in the screen circuit, and are thus the 
limiting elements of the only path of screen current 
circulation. A high current induction transformer produces 
the current Ig in the looped conductor, while a voltage 
source Vg excites the potential between conductor and 
metallic screen. For the modelling/simulations, Vg will be 
excited with a proper harmonic content, representing 
system level harmonics.  

Governing equations 
This section describes the governing equations of the 
equivalent circuit (Figure 1). The intention is to 
mathematically solve the current flow through the shunt 
admittance of the insulation and relate the current 
magnitude and phase in the C component with the G 
component. This would allow for an analytical description 
of the distorted, harmonic current of the latter.   

 
Figure 1: Equivalent circuit diagram of 1 single coaxial 
high voltage cable excited at one end. 

The non-linear, voltage-dependent conductance, G, can 
have various approximations, however, the V-I 
characteristic is expected to be of cubic behaviour, with 
either a value equal to zero at zero voltage level, or a value 
equal to 𝑔𝑔0 at zero voltage level. The value of the 
conductance must be positive as the passive component it 
is representing. Expressing the conductance (G) response, 
it can be defined as a polynomial whose variable is the 
terminal voltage (drop) of the conductance value, where the 
response should be symmetrical with reference to the 
voltage. Thus, the polynomial should only contain even 
powers. I.e., using the voltage across it, 𝑣𝑣𝑔𝑔, it should thus 
be on the form as given in Eq. ( 1 ) below:  

𝐺𝐺 =  𝑔𝑔0 + 𝑔𝑔2𝑣𝑣𝑔𝑔2  

( 1 ) 

where 𝑔𝑔0 is the conductance expressed as the reciprocal 
of the element, i.e.,  
𝑔𝑔0 = 1

𝑅𝑅
 , similarly is 𝑔𝑔2 where a constant k is introduced, i.e.,  

𝑔𝑔2 = 𝑘𝑘
𝑅𝑅
. The current through the conductance, 𝑖𝑖𝑔𝑔, can then 

be computed from as shown in Eq. ( 2 ) below. 
 
𝐺𝐺𝑣𝑣𝑔𝑔 =  (𝑔𝑔0 + 𝑔𝑔2𝑣𝑣𝑔𝑔2)𝑣𝑣𝑔𝑔 

( 2 ) 

which results in a cubic, non-linear V-I relationship that also 
is in accordance with a proposed approximation from lab 
specimens of bridged water trees provided in [7] of the form 
1
𝑅𝑅
�𝑣𝑣𝑔𝑔 + 𝑘𝑘𝑣𝑣𝑔𝑔3�. Note the odd (cubic) power of the V-I 

relationship in ( 2 ) above, indicating that the conductance 
only will generate harmonics of odd powers.  

By inspecting the equivalent circuit of Figure 1, one can 
derive the following equation of the voltage drop across the 
L and R of the main conductor, which must be the same for 
each half, thus: 

𝑣𝑣𝑐𝑐 =    𝑅𝑅𝑖𝑖2 + 𝐿𝐿
𝑑𝑑𝑖𝑖2
𝑑𝑑𝑑𝑑 + 𝑣𝑣𝑔𝑔 

( 3 ) 

Similarly, the total voltage drop across the M, Ls, and Rs of 
the screen, with each half being equal, can be expressed 
in two equations: 

𝑣𝑣𝑠𝑠 =    𝑅𝑅𝑠𝑠𝑖𝑖𝑠𝑠2 + 𝐿𝐿𝑠𝑠
𝑑𝑑𝑖𝑖𝑠𝑠2
𝑑𝑑𝑑𝑑 + 𝑀𝑀

𝑑𝑑𝑖𝑖2
𝑑𝑑𝑑𝑑  

 

𝑣𝑣𝑠𝑠 =    𝑅𝑅𝑠𝑠𝑖𝑖𝑠𝑠1 + 𝐿𝐿𝑠𝑠
𝑑𝑑𝑖𝑖𝑠𝑠1
𝑑𝑑𝑑𝑑 −𝑀𝑀

𝑑𝑑𝑖𝑖1
𝑑𝑑𝑑𝑑  

( 4 ) 

Then, the voltage drop across the C and the voltage drop 
across the G must be equal as they are in parallel, which 
can be utilized to express a combined voltage drop, here 
denoted 𝑣𝑣𝑚𝑚 where the subscript m denoted the “midpoint” 
of the T-branch, from the current through the C and the 
current though the G: 

𝑣𝑣𝑚𝑚 = 1
𝐶𝐶 ∫ 𝑖𝑖𝑐𝑐𝑑𝑑𝑑𝑑 𝐶𝐶 𝑑𝑑𝑣𝑣𝑚𝑚

𝑑𝑑𝑑𝑑
= 𝑖𝑖𝑐𝑐  

𝑣𝑣𝑚𝑚 = 𝑖𝑖𝑔𝑔
𝐺𝐺𝑚𝑚

  𝐺𝐺𝑚𝑚𝑣𝑣𝑚𝑚 = 𝑖𝑖𝑔𝑔 𝐺𝐺𝑚𝑚 = 𝑔𝑔2𝑣𝑣𝑚𝑚2  

( 5 ) 

where the conductance expression, Gm, is from the 
definition earlier, but with the 𝑔𝑔0 term for zero-value 
neglected.  

By KCL on the formed current loops, and recognizing the 
connection through the (shorted) voltage source Vg, the 
following must be true: 

𝑖𝑖1 − 𝑖𝑖2 = 𝑖𝑖𝑐𝑐 + 𝑖𝑖𝑔𝑔 = 𝑖𝑖𝑠𝑠1 + 𝑖𝑖𝑠𝑠2 

( 6 ) 

From the above set of equations, one may end up with the 
following differential equation: 
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𝑣𝑣𝑔𝑔 + 𝑅𝑅𝑖𝑖𝑔𝑔 + 𝐿𝐿
𝑑𝑑𝑖𝑖𝑔𝑔
𝑑𝑑𝑑𝑑 =  𝑣𝑣𝑚𝑚 + 𝑅𝑅𝑑𝑑𝐶𝐶

𝑑𝑑𝑣𝑣𝑚𝑚
𝑑𝑑𝑑𝑑 + 𝐿𝐿𝑑𝑑𝐶𝐶

𝑑𝑑2𝑣𝑣𝑚𝑚
𝑑𝑑𝑑𝑑2 + 𝑔𝑔2𝑅𝑅𝑑𝑑𝑣𝑣𝑚𝑚3

+ 3𝑔𝑔2𝐿𝐿𝑑𝑑𝑣𝑣𝑚𝑚2
𝑑𝑑𝑣𝑣𝑚𝑚
𝑑𝑑𝑑𝑑  

( 7 ) 

where: 

𝑅𝑅𝑑𝑑 = 𝑅𝑅 +
𝑅𝑅𝑠𝑠
2  

𝐿𝐿𝑑𝑑 = 𝐿𝐿 +
𝐿𝐿𝑠𝑠
2 −

𝑀𝑀
2  

( 8 ) 

The first parts of Eq. ( 7 ) can be said to be the response in 
the case of a constant valued admittance, while the 
additional non-linear terms describe the non-linear 
response of the voltage-dependent conductance (or 
combined mid-point voltage of “admittance”). The 
equivalent admittance would be very small, likewise the 𝑔𝑔2 
constant. An explicit approaximation could be achieved, but 
numerical implicit integration is preferred as it is more 
flexible in case of the form of the admittance needs to be 
changed, where the Runge-Kutta 4th order method is a  
suitable choice. 

Equations for the total voltage drops from the total 
circulation current in the screen circuit can also be 
developed for the computation of said total circulating 
screen current, 𝐼𝐼𝑠𝑠𝑐𝑐, where firstly, by recognizing similar KCL 
relationship as before  

𝑖𝑖𝑐𝑐 + 𝑖𝑖𝑔𝑔= 𝑖𝑖𝑠𝑠1 + 𝑖𝑖𝑠𝑠2 = 2𝑖𝑖𝑠𝑠 

( 9 ) 

the voltages of the closed-loop screen/ground mesh can be 
prescribed as below, where some of the main phase 
currents of each half, 𝑖𝑖𝑠𝑠1 and 𝑖𝑖𝑠𝑠2, are coupled: 

𝑅𝑅𝑠𝑠𝑖𝑖𝑠𝑠1 + 𝐿𝐿𝑠𝑠
𝑑𝑑𝑖𝑖𝑠𝑠1
𝑑𝑑𝑑𝑑 − 𝑅𝑅𝑠𝑠𝑖𝑖𝑠𝑠2 − 𝐿𝐿𝑠𝑠

𝑑𝑑𝑖𝑖𝑠𝑠2
𝑑𝑑𝑑𝑑 +2(𝑅𝑅𝑠𝑠 + 𝑅𝑅𝑔𝑔𝑔𝑔)𝑖𝑖𝑠𝑠𝑐𝑐 + 2𝐿𝐿𝑠𝑠

𝑑𝑑𝑖𝑖𝑠𝑠𝑐𝑐
𝑑𝑑𝑑𝑑

=  𝑀𝑀
𝑑𝑑𝑖𝑖1
𝑑𝑑𝑑𝑑 + 𝑀𝑀

𝑑𝑑𝑖𝑖2
𝑑𝑑𝑑𝑑  

( 10 ) 

Then, by assuming that 𝑖𝑖𝑠𝑠1 ≅ 𝑖𝑖𝑠𝑠2 and 𝑖𝑖1 ≅ 𝑖𝑖2, Eq. ( 10 ) 
above can be simplified to: 
 

2(𝑅𝑅𝑠𝑠 + 𝑅𝑅𝑔𝑔𝑔𝑔)𝑖𝑖𝑠𝑠𝑐𝑐 + 2𝐿𝐿𝑠𝑠
𝑑𝑑𝑖𝑖𝑠𝑠𝑐𝑐
𝑑𝑑𝑑𝑑 =  2𝑀𝑀

𝑑𝑑𝑖𝑖1
𝑑𝑑𝑑𝑑  

( 11 ) 

By remembering 𝑖𝑖1 =  𝐼𝐼𝑔𝑔, the solution to the rather simple 
differential equation of Eq. ( 11 ) above can readily be 
computed to: 
 

𝐼𝐼𝑠𝑠𝑐𝑐 = 𝑗𝑗

𝑀𝑀
𝐿𝐿𝑠𝑠
𝜔𝜔

𝑅𝑅𝑔𝑔𝑔𝑔 + 𝑅𝑅𝑠𝑠
𝐿𝐿𝑠𝑠

+ 𝑗𝑗𝜔𝜔
𝐼𝐼𝑔𝑔 

( 12 ) 

By introduction of the grounding resistances, 𝑅𝑅𝑔𝑔𝑔𝑔, the 
circulating current in the screen is limited, and from 
variation of the resistance value, a stable solution can be 
found, which for this case was the applicable for realistic 
values of 0.1-1 Ω. From Eq. ( 12 ) it is evident that at DC 
excitation (zero frequency), the total screen current, 𝐼𝐼𝑠𝑠𝑐𝑐, 
would equal zero. 

Note, that the differential equation ( 10 ) contains no non-
linear terms of the conductance, and hence does not 
require the use of an indirect, time-dependent solving 
approach, as opposed to the previous terms containing the 
mid-point voltage 𝑣𝑣𝑚𝑚; instead Eq. ( 10 ) can be solved in 
steady-state as evident from Eq. ( 12 ). 

Three-phase circuit model 
While the previously analysed single-phase circuit above is 
used for the simulation of the harmonic current generation 
of the non-linear conductance, similar equations are here 
developed for a three-phase cable circuit. The proposed 
complete circuit model can be seen in Figure 2, where 
insulation admittance consisting of capacitance (C) and 
conductance (Gx) per phase is forming the shunt 
connection in the T model, with equal phase resistance (R) 
and self-inductance (L), and screen self-inductance (Ls) 
and resistance (Rs), plus mutual phase-to-screen and 
mutual screen-to-screen inductive impedance couplings on 
both side of the T branch. With phase a as an example, the 
mutual inductive impedance between phase a and screen 
a is represented as the 𝑀𝑀𝑀𝑀𝑀𝑀 expression, the mutual 
inductive impedance between screen a, and phase b and c 
as the 𝑀𝑀𝑀𝑀𝑀𝑀 and 𝑀𝑀𝑀𝑀𝑀𝑀 expressions, respectively, while the 
couplings between screen a and the screens of b and c are 

Figure 2: Equivalent circuit diagram of a 3 single core coaxial three-phase high voltage cables excited at both ends 
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represented by the expressions 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 and 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀, 
respectively. Similarly for the remaining phases and 
screens. Grounding resistances of 0.1-1 Ω are introduced 
on each side of the screens.  

Using the same terminology from the single-phase circuit 
and the same non-linear conductance of Eq. ( 1 ), 
equations are here developed for phase a of Figure 2, 
where the complexity of the equations and number of 
equations increase due to the three separate phases and 
screens, plus the different voltage excitations of each end.  

Firstly, the two voltage sources (that can vary in magnitude 
and phase) can be expressed from summation of their 
enclosed voltage loops: 

𝑣𝑣𝑎𝑎1 =    𝑅𝑅𝑖𝑖𝑎𝑎1 + 𝐿𝐿
𝑑𝑑𝑖𝑖𝑎𝑎1
𝑑𝑑𝑑𝑑 + 𝑣𝑣𝑎𝑎𝑚𝑚 + 𝑣𝑣𝑠𝑠𝑎𝑎1 + 𝑣𝑣𝑔𝑔𝑔𝑔𝑠𝑠1 + 𝑣𝑣𝑔𝑔𝑔𝑔1 

 

𝑣𝑣𝑎𝑎2 = −𝑅𝑅𝑖𝑖𝑎𝑎2 − 𝐿𝐿
𝑑𝑑𝑖𝑖𝑎𝑎2
𝑑𝑑𝑑𝑑 + 𝑣𝑣𝑎𝑎𝑚𝑚 + 𝑣𝑣𝑠𝑠𝑎𝑎2 + 𝑣𝑣𝑔𝑔𝑔𝑔𝑠𝑠2 + 𝑣𝑣𝑔𝑔𝑔𝑔2 

( 13 ) 

where the voltage drop, 𝑣𝑣𝑎𝑎𝑚𝑚, across the midpoint 
“admittance” and currents through the capacitance and 
conductance, 𝑖𝑖𝑐𝑐𝑎𝑎, and 𝑖𝑖𝑔𝑔𝑎𝑎, respectively, will be identical to 
the set of equations from Eq. ( 5 ), but this time with 
included 𝑔𝑔0 constant.  
 
And similarly, from KCL: 
𝑖𝑖𝑎𝑎1 − 𝑖𝑖𝑎𝑎2 = 𝑖𝑖𝑐𝑐𝑎𝑎 + 𝑖𝑖𝑔𝑔𝑎𝑎 = 𝑖𝑖𝑠𝑠𝑎𝑎1 + 𝑖𝑖𝑠𝑠𝑎𝑎2 

( 14 ) 

The voltage drops of each side of the screen, 𝑣𝑣𝑠𝑠𝑎𝑎1, and 𝑣𝑣𝑠𝑠𝑎𝑎2 
from Eq. ( 13 ) above, can by defining terms for the coupling 
currents between the screens of each phase, 𝑖𝑖𝑐𝑐𝑐𝑐𝑎𝑎, 𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐, and 
𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐, and with the coupling of some of the currents of the 
main phase currents, 𝑖𝑖𝑎𝑎1, 𝑖𝑖𝑐𝑐1, and 𝑖𝑖𝑐𝑐1 (and similar for half 
2), be expressed as: 

𝑣𝑣𝑠𝑠𝑎𝑎1 = 𝑅𝑅𝑠𝑠𝑖𝑖𝑠𝑠𝑎𝑎1 + 𝐿𝐿𝑠𝑠
𝑑𝑑𝑖𝑖𝑠𝑠𝑎𝑎1
𝑑𝑑𝑑𝑑 + 𝑅𝑅𝑠𝑠𝑖𝑖𝑐𝑐𝑐𝑐𝑎𝑎 + 𝐿𝐿𝑠𝑠

𝑑𝑑𝑖𝑖𝑐𝑐𝑐𝑐𝑎𝑎
𝑑𝑑𝑑𝑑 − 𝑀𝑀𝑎𝑎𝑎𝑎

𝑑𝑑𝑖𝑖𝑎𝑎1
𝑑𝑑𝑑𝑑

− 𝑀𝑀𝑎𝑎𝑐𝑐
𝑑𝑑𝑖𝑖𝑐𝑐1
𝑑𝑑𝑑𝑑 −𝑀𝑀𝑎𝑎𝑐𝑐

𝑑𝑑𝑖𝑖𝑐𝑐1
𝑑𝑑𝑑𝑑 + 𝑀𝑀𝑠𝑠𝑎𝑎𝑐𝑐

𝑑𝑑𝑖𝑖𝑠𝑠𝑐𝑐1
𝑑𝑑𝑑𝑑

+ 𝑀𝑀𝑠𝑠𝑎𝑎𝑐𝑐
𝑑𝑑𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐
𝑑𝑑𝑑𝑑 + 𝑀𝑀𝑠𝑠𝑎𝑎𝑐𝑐

𝑑𝑑𝑖𝑖𝑠𝑠𝑐𝑐1
𝑑𝑑𝑑𝑑 + 𝑀𝑀𝑠𝑠𝑎𝑎𝑐𝑐

𝑑𝑑𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐
𝑑𝑑𝑑𝑑  

 

𝑣𝑣𝑠𝑠𝑎𝑎2 = 𝑅𝑅𝑠𝑠𝑖𝑖𝑠𝑠𝑎𝑎2 + 𝐿𝐿𝑠𝑠
𝑑𝑑𝑖𝑖𝑠𝑠𝑎𝑎2
𝑑𝑑𝑑𝑑 − 𝑅𝑅𝑠𝑠𝑖𝑖𝑐𝑐𝑐𝑐𝑎𝑎 − 𝐿𝐿𝑠𝑠

𝑑𝑑𝑖𝑖𝑐𝑐𝑐𝑐𝑎𝑎
𝑑𝑑𝑑𝑑 + 𝑀𝑀𝑎𝑎𝑎𝑎

𝑑𝑑𝑖𝑖𝑎𝑎2
𝑑𝑑𝑑𝑑

+ 𝑀𝑀𝑎𝑎𝑐𝑐
𝑑𝑑𝑖𝑖𝑐𝑐2
𝑑𝑑𝑑𝑑 + 𝑀𝑀𝑎𝑎𝑐𝑐

𝑑𝑑𝑖𝑖𝑐𝑐2
𝑑𝑑𝑑𝑑 + 𝑀𝑀𝑠𝑠𝑎𝑎𝑐𝑐

𝑑𝑑𝑖𝑖𝑠𝑠𝑐𝑐2
𝑑𝑑𝑑𝑑

− 𝑀𝑀𝑠𝑠𝑎𝑎𝑐𝑐
𝑑𝑑𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐
𝑑𝑑𝑑𝑑 + 𝑀𝑀𝑠𝑠𝑎𝑎𝑐𝑐

𝑑𝑑𝑖𝑖𝑠𝑠𝑐𝑐2
𝑑𝑑𝑑𝑑 −𝑀𝑀𝑠𝑠𝑎𝑎𝑐𝑐

𝑑𝑑𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐
𝑑𝑑𝑑𝑑  

( 15 ) 

Finally, the voltage drops of the screen grounding resistors 
and generator neutral star point resistors, 𝑣𝑣𝑔𝑔𝑔𝑔𝑠𝑠1 and 𝑣𝑣𝑔𝑔𝑔𝑔1, 
respectively, (and similar for half 2) from Eq. ( 13 ), can be 
defined as Eq. ( 17 ). 

𝑣𝑣𝑔𝑔𝑔𝑔𝑠𝑠1 = 𝑅𝑅𝑔𝑔𝑠𝑠1(𝑖𝑖𝑠𝑠𝑎𝑎1 + 𝑖𝑖𝑠𝑠𝑐𝑐1 + 𝑖𝑖𝑠𝑠𝑐𝑐1 + 𝑖𝑖𝑐𝑐𝑐𝑐𝑎𝑎 + 𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐) 

𝑣𝑣𝑔𝑔𝑔𝑔𝑠𝑠2 = 𝑅𝑅𝑔𝑔𝑠𝑠2(𝑖𝑖𝑠𝑠𝑎𝑎2 + 𝑖𝑖𝑠𝑠𝑐𝑐2 + 𝑖𝑖𝑠𝑠𝑐𝑐2 − 𝑖𝑖𝑐𝑐𝑐𝑐𝑎𝑎 − 𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐 − 𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐) 

𝑣𝑣𝑔𝑔𝑔𝑔1 = 𝑅𝑅𝑔𝑔𝑔𝑔1(𝑖𝑖𝑠𝑠𝑎𝑎1 + 𝑖𝑖𝑠𝑠𝑐𝑐1 + 𝑖𝑖𝑠𝑠𝑐𝑐1 + 𝑖𝑖𝑎𝑎1 + 𝑖𝑖𝑐𝑐1 + 𝑖𝑖𝑐𝑐1) 

𝑣𝑣𝑔𝑔𝑔𝑔2 = 𝑅𝑅𝑔𝑔𝑔𝑔2(𝑖𝑖𝑠𝑠𝑎𝑎1 + 𝑖𝑖𝑠𝑠𝑐𝑐1 + 𝑖𝑖𝑠𝑠𝑐𝑐1 − 𝑖𝑖𝑎𝑎2 − 𝑖𝑖𝑐𝑐2 − 𝑖𝑖𝑐𝑐2) 

( 17 ) 

To calculate the mid-point voltage drop and currents (of the 
conductance and capacitance), the development of an 
equation for the sum of the two voltage sources is 
necessary. Therefore, by summation of the two 
expressions of Eq. ( 13 ) and rewriting: 

𝑣𝑣𝑎𝑎1 + 𝑣𝑣𝑎𝑎2 =    𝑅𝑅𝑆𝑆𝑖𝑖𝑠𝑠𝑎𝑎 + 𝐿𝐿𝐷𝐷𝑖𝑖𝑠𝑠𝑎𝑎 + 2𝑣𝑣𝑎𝑎𝑚𝑚 + 𝑅𝑅𝑠𝑠𝑆𝑆𝑖𝑖𝑠𝑠𝑎𝑎 + 𝐿𝐿𝑠𝑠𝐷𝐷𝑖𝑖𝑠𝑠𝑎𝑎
− 𝑀𝑀𝑎𝑎𝑎𝑎𝐷𝐷𝑖𝑖𝑠𝑠𝑎𝑎 − 𝑀𝑀𝑎𝑎𝑐𝑐𝐷𝐷𝑖𝑖𝑠𝑠𝑐𝑐 −𝑀𝑀𝑎𝑎𝑐𝑐𝐷𝐷𝑖𝑖𝑠𝑠𝑐𝑐
+ 𝑀𝑀𝑠𝑠𝑎𝑎𝑐𝑐𝐷𝐷𝑖𝑖𝑠𝑠𝑐𝑐 + 𝑀𝑀𝑠𝑠𝑎𝑎𝑐𝑐𝐷𝐷𝑖𝑖𝑠𝑠𝑐𝑐 + 2(𝑅𝑅𝑔𝑔𝑠𝑠
+ 𝑅𝑅𝑔𝑔𝑔𝑔)𝑆𝑆𝑖𝑖𝑠𝑠𝑎𝑎 + 2(𝑅𝑅𝑔𝑔𝑠𝑠 + 𝑅𝑅𝑔𝑔𝑔𝑔)𝑆𝑆𝑖𝑖𝑠𝑠𝑐𝑐 + 2(𝑅𝑅𝑔𝑔𝑠𝑠
+ 𝑅𝑅𝑔𝑔𝑔𝑔)𝑆𝑆𝑖𝑖𝑠𝑠𝑐𝑐 

( 18 ) 

where: 

𝑆𝑆𝑖𝑖𝑠𝑠𝑎𝑎 = 𝑖𝑖𝑠𝑠𝑎𝑎1 + 𝑖𝑖𝑠𝑠𝑎𝑎2 =  𝐶𝐶
𝑑𝑑𝑣𝑣𝑎𝑎𝑚𝑚
𝑑𝑑𝑑𝑑 + (𝑔𝑔0 + 𝑔𝑔2𝑣𝑣𝑎𝑎𝑚𝑚2 )𝑣𝑣𝑎𝑎𝑚𝑚 

( 19 ) 

and its first derivative: 

𝐷𝐷𝑖𝑖𝑠𝑠𝑎𝑎 =
𝑑𝑑𝑖𝑖𝑠𝑠𝑎𝑎1
𝑑𝑑𝑑𝑑 +

𝑑𝑑𝑖𝑖𝑠𝑠𝑎𝑎2
𝑑𝑑𝑑𝑑 =  𝐶𝐶

𝑑𝑑2𝑣𝑣𝑎𝑎𝑚𝑚
𝑑𝑑𝑑𝑑2 + (3𝑔𝑔2𝑣𝑣𝑎𝑎𝑚𝑚)𝑣𝑣𝑎𝑎𝑚𝑚 

( 20 ) 

Eq. ( 18 ) can similarly be defined for phase b and c, and 
the complete set of equations be put in matrix form, which 
has been done in Eq. ( 16 ) shown at the bottom of this 
page.  

The variables to be determined are thus the mid-point 
voltages of all three phases, denoted x: 𝑣𝑣𝑥𝑥𝑚𝑚, which only 
depend on the values of 𝑣𝑣𝑥𝑥1 and 𝑣𝑣𝑥𝑥2. 

The solution of this system first involves the diagonalising 
of the matrix with the second derivatives, after which the 
Runge-Kutta method of 4th order again can be utilised. 

Like that of the single-phase circuit, expressions for the 
circulating currents of the three-phase circuit, 𝑖𝑖𝑐𝑐𝑐𝑐𝑎𝑎, 𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐, and 
𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐 must be setup. By KVL, the voltage dropped in the 
combined screen-to-neutral circuit can be expressed as: 

𝑀𝑀𝑎𝑎𝑎𝑎
𝑑𝑑𝑖𝑖𝑎𝑎1
𝑑𝑑𝑑𝑑 + 𝑀𝑀𝑎𝑎𝑐𝑐

𝑑𝑑𝑖𝑖𝑐𝑐1
𝑑𝑑𝑑𝑑 + 𝑀𝑀𝑎𝑎𝑐𝑐

𝑑𝑑𝑖𝑖𝑐𝑐1
𝑑𝑑𝑑𝑑 − 𝑀𝑀𝑠𝑠𝑎𝑎𝑐𝑐

𝑑𝑑𝑖𝑖𝑠𝑠𝑐𝑐1
𝑑𝑑𝑑𝑑 − 𝑀𝑀𝑠𝑠𝑎𝑎𝑐𝑐

𝑑𝑑𝑖𝑖𝑠𝑠𝑐𝑐1
𝑑𝑑𝑑𝑑

+ +𝑀𝑀𝑎𝑎𝑎𝑎
𝑑𝑑𝑖𝑖𝑎𝑎2
𝑑𝑑𝑑𝑑 + 𝑀𝑀𝑎𝑎𝑐𝑐

𝑑𝑑𝑖𝑖𝑐𝑐2
𝑑𝑑𝑑𝑑 + 𝑀𝑀𝑎𝑎𝑐𝑐

𝑑𝑑𝑖𝑖𝑐𝑐2
𝑑𝑑𝑑𝑑

+ 𝑀𝑀𝑠𝑠𝑎𝑎𝑐𝑐
𝑑𝑑𝑖𝑖𝑠𝑠𝑐𝑐2
𝑑𝑑𝑑𝑑 + 𝑀𝑀𝑠𝑠𝑎𝑎𝑐𝑐

𝑑𝑑𝑖𝑖𝑖𝑖𝑠𝑠𝑐𝑐2
𝑑𝑑𝑑𝑑

=  2𝑅𝑅𝑠𝑠𝑖𝑖𝑐𝑐𝑐𝑐𝑎𝑎 + 2𝐿𝐿𝑠𝑠
𝑑𝑑𝑖𝑖𝑐𝑐𝑐𝑐𝑎𝑎
𝑑𝑑𝑑𝑑 + (𝑅𝑅𝑔𝑔𝑠𝑠1

+ 𝑅𝑅𝑔𝑔𝑠𝑠2)(𝑖𝑖𝑐𝑐𝑐𝑐𝑎𝑎 + 𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐) 

( 16 ) 
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( 21 ) 

Eq. ( 21 ) can be simplified by assuming that 𝑖𝑖𝑠𝑠𝑐𝑐1 ≈ 𝑖𝑖𝑠𝑠𝑐𝑐2 and 
𝑖𝑖𝑠𝑠𝑐𝑐1 ≈ 𝑖𝑖𝑠𝑠𝑐𝑐2, i.e.: 

𝑀𝑀𝑎𝑎𝑎𝑎 �
𝑑𝑑𝑖𝑖𝑎𝑎1
𝑑𝑑𝑑𝑑 +

𝑑𝑑𝑖𝑖𝑎𝑎2
𝑑𝑑𝑑𝑑 � + 𝑀𝑀𝑎𝑎𝑐𝑐 �

𝑑𝑑𝑖𝑖𝑐𝑐1
𝑑𝑑𝑑𝑑 +

𝑑𝑑𝑖𝑖𝑐𝑐2
𝑑𝑑𝑑𝑑 � + 𝑀𝑀𝑎𝑎𝑐𝑐 �

𝑑𝑑𝑖𝑖𝑐𝑐1
𝑑𝑑𝑑𝑑 +

𝑑𝑑𝑖𝑖𝑐𝑐2
𝑑𝑑𝑑𝑑 �

=  (2𝑅𝑅𝑠𝑠 + 𝑅𝑅𝑔𝑔𝑠𝑠1 + 𝑅𝑅𝑔𝑔𝑠𝑠2)𝑖𝑖𝑐𝑐𝑐𝑐𝑎𝑎 + 2𝐿𝐿𝑠𝑠
𝑑𝑑𝑖𝑖𝑐𝑐𝑐𝑐𝑎𝑎
𝑑𝑑𝑑𝑑

+ (𝑅𝑅𝑔𝑔𝑠𝑠1 + 𝑅𝑅𝑔𝑔𝑠𝑠2)(𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐) 

( 22 ) 

Defining the below equations: 

𝑖𝑖𝑎𝑎 =  𝑖𝑖𝑎𝑎1 + 𝑖𝑖𝑎𝑎2  
𝑖𝑖𝑐𝑐 =  𝑖𝑖𝑐𝑐1 + 𝑖𝑖𝑐𝑐2 
𝑖𝑖𝑐𝑐 =  𝑖𝑖𝑐𝑐1 + 𝑖𝑖𝑐𝑐2 

( 23 ) 

then Eq. ( 22 ) can be written in a more compact matrix 
form: 

�
𝑀𝑀𝑎𝑎𝑎𝑎 𝑀𝑀𝑎𝑎𝑐𝑐 𝑀𝑀𝑎𝑎𝑐𝑐
𝑀𝑀𝑐𝑐𝑎𝑎 𝑀𝑀𝑐𝑐𝑐𝑐 𝑀𝑀𝑐𝑐𝑐𝑐
𝑀𝑀𝑐𝑐𝑎𝑎 𝑀𝑀𝑐𝑐𝑐𝑐 𝑀𝑀𝑐𝑐𝑐𝑐

�

⎣
⎢
⎢
⎢
⎢
⎡
𝑑𝑑𝑖𝑖𝑎𝑎
𝑑𝑑𝑑𝑑
𝑑𝑑𝑖𝑖𝑐𝑐
𝑑𝑑𝑑𝑑
𝑑𝑑𝑖𝑖𝑐𝑐
𝑑𝑑𝑑𝑑 ⎦
⎥
⎥
⎥
⎥
⎤

= 2 �
𝑅𝑅𝑠𝑠 + 𝑅𝑅𝑔𝑔𝑠𝑠 𝑅𝑅𝑔𝑔𝑠𝑠 𝑅𝑅𝑔𝑔𝑠𝑠
𝑅𝑅𝑔𝑔𝑠𝑠 𝑅𝑅𝑠𝑠 + 𝑅𝑅𝑔𝑔𝑠𝑠 𝑅𝑅𝑔𝑔𝑠𝑠
𝑅𝑅𝑔𝑔𝑠𝑠 𝑅𝑅𝑔𝑔𝑠𝑠 𝑅𝑅𝑠𝑠 + 𝑅𝑅𝑔𝑔𝑠𝑠

� �
𝑖𝑖𝑐𝑐𝑐𝑐𝑎𝑎
𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐
𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐

�

+ 2𝐿𝐿𝑠𝑠 �
1 0 0
0 1 0
0 0 1

�

⎣
⎢
⎢
⎢
⎢
⎡
𝑑𝑑𝑖𝑖𝑐𝑐𝑐𝑐𝑎𝑎
𝑑𝑑𝑑𝑑
𝑑𝑑𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐
𝑑𝑑𝑑𝑑
𝑑𝑑𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐
𝑑𝑑𝑑𝑑 ⎦

⎥
⎥
⎥
⎥
⎤

 

( 24 ) 

From Eq. ( 24 ) it is evident that the three phase currents, 
denoted subscript x, 𝑖𝑖𝑥𝑥, by default are well balanced from 
the equal resistances of the screens and ground circuits 
and the self-impedances. If the mutual impedances are 
equal also, the circulating screen currents will be balanced 
also, which could be the case for cables in trefoil formation.  

To solve the above equations, it is necessary to define the 
following for the phase circuits: 

�𝑣𝑣𝑎𝑎1 − 𝑅𝑅𝑔𝑔𝑠𝑠1(𝑖𝑖𝑎𝑎1 + 𝑖𝑖𝑐𝑐1 + 𝑖𝑖𝑐𝑐1)� − �𝑣𝑣𝑎𝑎2 − 𝑅𝑅𝑔𝑔𝑠𝑠2(𝑖𝑖𝑎𝑎2 + 𝑖𝑖𝑐𝑐2 + 𝑖𝑖𝑐𝑐2)�

=    𝑅𝑅𝑖𝑖𝑎𝑎1 + 𝐿𝐿
𝑑𝑑𝑖𝑖𝑎𝑎1
𝑑𝑑𝑑𝑑 + 𝑅𝑅𝑖𝑖𝑎𝑎2 + 𝐿𝐿

𝑑𝑑𝑖𝑖𝑎𝑎2
𝑑𝑑𝑑𝑑  

( 25 ) 

Similar to the single-phase calculation of the circulating 
current, no non-linear element is here present, and the 
solution to the above differential equation can be performed 
as a steady-state problem, that eventually takes the 
solution as given in Eq. ( 26 ) below: 

�
𝑖𝑖𝑐𝑐𝑐𝑐𝑎𝑎
𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐
𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐

� = 𝑗𝑗
𝜔𝜔
2 𝑍𝑍𝑠𝑠𝑔𝑔

−1 �
𝑀𝑀𝑎𝑎𝑎𝑎 𝑀𝑀𝑎𝑎𝑐𝑐 𝑀𝑀𝑎𝑎𝑐𝑐
𝑀𝑀𝑐𝑐𝑎𝑎 𝑀𝑀𝑐𝑐𝑐𝑐 𝑀𝑀𝑐𝑐𝑐𝑐
𝑀𝑀𝑐𝑐𝑎𝑎 𝑀𝑀𝑐𝑐𝑐𝑐 𝑀𝑀𝑐𝑐𝑐𝑐

� 𝑍𝑍𝑥𝑥𝑔𝑔−1 �
𝑣𝑣𝑎𝑎1 − 𝑣𝑣𝑎𝑎2
𝑣𝑣𝑐𝑐1 − 𝑣𝑣𝑐𝑐2
𝑣𝑣𝑐𝑐1 − 𝑣𝑣𝑐𝑐2

� 

( 26 ) 

where: 

𝑍𝑍𝑠𝑠𝑔𝑔 = �
𝑅𝑅𝑠𝑠 + 𝑅𝑅𝑔𝑔𝑠𝑠 + 𝑗𝑗𝜔𝜔𝐿𝐿𝑠𝑠 𝑅𝑅𝑔𝑔𝑠𝑠 𝑅𝑅𝑔𝑔𝑠𝑠

𝑅𝑅𝑔𝑔𝑠𝑠 𝑅𝑅𝑠𝑠 + 𝑅𝑅𝑔𝑔𝑠𝑠 + 𝑗𝑗𝜔𝜔𝐿𝐿𝑠𝑠 𝑅𝑅𝑔𝑔𝑠𝑠
𝑅𝑅𝑔𝑔𝑠𝑠 𝑅𝑅𝑔𝑔𝑠𝑠 𝑅𝑅𝑠𝑠 + 𝑅𝑅𝑔𝑔𝑠𝑠 + 𝑗𝑗𝜔𝜔𝐿𝐿𝑠𝑠

� 

𝑍𝑍𝑥𝑥𝑔𝑔 = �
𝑅𝑅 + 𝑅𝑅𝑔𝑔𝑔𝑔 + 𝑗𝑗𝜔𝜔𝐿𝐿 𝑅𝑅𝑔𝑔𝑔𝑔 𝑅𝑅𝑔𝑔𝑔𝑔

𝑅𝑅𝑔𝑔𝑔𝑔 𝑅𝑅 + 𝑅𝑅𝑔𝑔𝑔𝑔 + 𝑗𝑗𝜔𝜔𝐿𝐿 𝑅𝑅𝑔𝑔𝑔𝑔
𝑅𝑅𝑔𝑔𝑔𝑔 𝑅𝑅𝑔𝑔𝑔𝑔 𝑅𝑅 + 𝑅𝑅𝑔𝑔𝑔𝑔 + 𝑗𝑗𝜔𝜔𝐿𝐿

� 

Again, as seen, a frequency of 0 Hz will result in no 
inductive circulating current, adhering to the circuit theory.  

RESULTS 
The Runge-Kutta method of 4th order with properly defined 
auxiliary variables has been programmed in MATLAB to 
solve for 𝑣𝑣𝑚𝑚, 𝑖𝑖𝑔𝑔, 𝑖𝑖𝑐𝑐 from the set of equations developed for 
the single-phase circuit, more specifically the differential 
equation of Eq. ( 7 ), while taking into consideration the 
expression of the circulation current of Eq. ( 12 ) as well.  

In Figure 3 the computed current in the conductance, 𝑖𝑖𝑔𝑔, 
the capacitive current, 𝑖𝑖𝑐𝑐, the inductive coupling current, 𝐼𝐼𝑠𝑠𝑐𝑐, 
and the total screen circulating current, 𝐼𝐼𝑠𝑠𝑐𝑐 +  𝐼𝐼𝑠𝑠1 is plotted. 
The initial behavior of the curves is the stabilization of the 
integration of the (transient) solution.  

 
Figure 3: Computation of the conduction current, 
capacitive current, inductive coupling current, and the 
total screen circulating current.  

From Figure 3 𝑖𝑖𝑔𝑔 (blue) can be seen to contain harmonics, 
especially the 3rd harmonic waveform. The conductance 
current is as expected 90° out of phase with the capacitive 
(and thus in phase with the generator voltage). As 
previously described, the generator voltage is defined to 
contain harmonics up until the 13th order, which are 
reflected in the capacitive current as well, as well as the 
circulating screen current. The generator harmonics 
contribute very little to the conductance current, which 
instead is dominated by its own generation of harmonics 
(especially of 3rd order).  

To get a more clear distinction between generator 
harmonics and conductance generated harmonics, a FFT 
is performed and the percentage THD of the harmonic 
orders are plotted in Figure 4 below, where both the mid-
point voltage harmonics and the conductance current 
harmonics are plotted, where the first is referenced to the 
total mid-point voltage and the latter to the total 
conductance current.  
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Figure 4: Percentage THD of mid-point voltage (green) 
and conductance current (red), each with ref. to its own 
fundamental.  

Figure 4 proves that the harmonic current generation of the 
non-linear conductance is dominating the generation of odd 
current harmonics.  

DISCUSSION 
The proposed differential equations for the computation of 
the harmonic currents generated by the equivalent shunt 
conductance should be verified by experimental testing that 
includes thermal aging and water trees of/in the XLPE 
insulation, which is planned as the next steps by the 
authors of the paper. The no-linear V-I relationship in case 
of water tree has already been proven in previous work [4], 
[7], but it should be further researched to classify the 
amount of sensitivity of the harmonic current generation. A 
more detailed representation can be made to include 
hysteresis of the leakage current generation.  

From optimised placement of current transformers (CTs) 
with sufficient bandwidth, e.g., passive, optical CTs around 
grounding link cables of a HV cable system, the harmonic 
current content of the screen currents to earth can be 
analysed, and combined with phase optical CT 
measurements, the harmonics of the leakage current can 
be separated from system harmonics in the main 
conductors, which as shown, also is mixed into the leakage 
and capacitive (charging) currents. The leakage current 
harmonic content can then from analysed lab results be 
used to give an early indication of insulation deterioration 
in an on-line measurement scheme. From thermal aging of 
XLPE insulation results in very high THD of especially the 
3rd, 9th, and 13th harmonics of the leakage current, which 
emphasises the usability of a measurement scheme for 
early insulation deterioration detection [5]. One can even 
imagine that a sudden increase in harmonic leakage 
current content can indicate a pre-fault state.  

The given equations can be expanded to single-point 
bonded cable systems, where the equivalent ground 
resistance values of the already provided double-point 
bonded system can be increased sufficiently. Finally, 
equations for a cross-bonded cable system can be 
developed, where circulating currents may or may not arise 
in the screens. For a cross-bonded scheme, an ingenious 
measurement scheme should be researched, such that 
leakage current measurements are properly captured, 
which can be difficult for a cross-bonded system with 
coaxial link cables.  

CONCLUSION 
The circuit model and developed differential equations 

presented in this paper shows that the nonlinear V-I 
characteristics of degraded XLPE insulation introduces 
harmonic currents in the leakage current. Thus, the 
measurement of leakage current in the earthing connection 
of power cable screens and the analysis of harmonics of 
specific order would enable an ageing detection method, 
which could be executed without taking the cable out of 
service. 

In the future, the developed model is expected to be 
experimentally verified through a laboratory test of a power 
cable exposed to thermal degradation. The conductor and 
screen current shall be measured an analysed in different 
degradation stages to compare the harmonic content of the 
leakage current with the simulation, for the optimal 
development of an on-line algorithm for XLPE deterioration 
detection.  
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